Readspeaker menu

Research Projects

Current Research Grants/Projects

Project Title:

Moving in time and space - Do (a)symmetric time-space mappings depend on modality-specific processing?

Project Description:

Embodied cognition accounts submit that cognitive representations such as representations of time and space and movements mutually modulate each other. Yet, two conflicting theories provide alternative explanations as to how this modulation is effectuated. According to the asymmetry hypothesis movements influence spatial representations, which then influence temporal representations. Therefore, with respect to time-space mappings, the asymmetry hypothesis predicts that spatial representations have a larger impact on temporal representations than temporal representations on spatial representations. In contrast, A Theory of Magnitude (ATOM) advocates that time and space are processed by a shared magnitude system that develops through movement. Consequently, with respect to time-space mappings, the ATOM hypothesis proposes that temporal and spatial representations impact each other equally. While both theoretical approaches have received empirical support, closer inspection reveals that this may - in part - be due to the relative contribution of different modalities to finding task-appropriate solutions. It is well known that the processing of time and space is differently sensitive within the different modalities. For instance, auditory information processing is more sensitive to temporal than spatial information, whereas visual information processing is more sensitive to spatial than temporal information. It follows that a proper test of either hypothesis needs to control for relative contributions of different modalities for task-appropriate solutions. To this end, the aim of the proposed research project is to systematically manipulate the relative informational value of different modalities for tasks that require accurate temporal and spatial representations (i.e., catching a ball). The unique contribution of this research project is a critical test of the asymmetry hypothesis against ATOM from an embodied cognition perspective, thereby fundamentally increasing our understanding how interactions between movements and space-time mappings are modulated by modality-specific processing.

Funding Body:

This project is funded by the German Research Foundation [DFG] from May/June 2018 until May/June 2020; PIs: Prof. Dr. Rouwen Cañal-Bruland, Friedrich-Schiller-University Jena & Prof. Dr. Markus Raab, German Sports University Cologne; together with Jonna Loeffler, German Sports University Cologne.


Project Title:

The groundedness of temporal and spatial representations in movement: Examining the bi-directionality and asymmetry hypotheses from an embodied cognition perspective.

Project Description:

Embodied cognition posits that abstract conceptual knowledge such as mental representations of time and space are at least partially grounded in sensory-motor experiences. Assuming a bi-directional link, it is hypothesized that changes to the motor system (i.e., by means of movements) impact on perceptions of time and space, and changes to representations of time and space influence motor behavior. The aim of the proposed research project is to empirically and systematically examine the bi-directionality hypothesis from an embodiment perspective that is grounded in human movement. Intriguing insights into our understanding of abstract domains such as representations of time indicate that representations of time are understood by means of spatial metaphors. Interestingly, however, while spatial metaphors are paramount in shaping our understanding of time, temporal metaphors seem of lesser relevance when making spatial judgments. This asymmetry in metaphorical map-pings of time and space allows us to generate straightforward, embodiment hypotheses and to put these to close experimental scrutiny. The unique contribution of this research project is to examine the bi-directionality and the asymmetry hypotheses while measuring the impact of the qualities (i.e. kinematic characteristics) of whole-body movements on temporal and spatial representations and vice versa, that is, the impact of time- or space-oriented metaphorical instructions on the qualities of whole-body movements.

Funding Body:

This project is funded by the German Research Foundation [DFG] from 2014 until 2018; PI: Prof. Dr. Markus Raab, German Sports University Cologne; Co-PI: Prof. Dr. Rouwen Cañal-Bruland, Friedrich-Schiller-University Jena; for more information about the Project here).